johnnieb8030 johnnieb8030
  • 03-04-2020
  • Mathematics
contestada

Use the definition of continuity and the properties of limits to show that the function f(x) = x^2 + 5(x - 2)^7 is continuous at x = 3

Respuesta :

PollyP52 PollyP52
  • 03-04-2020

Answer:

See below.

Step-by-step explanation:

First check that f(x) has a real value at x = 3:

f(3) = 3^2 + 5(3 - 2)^7

=  9 + 5 * 1^7

=  14,

So the first condition is met.

Now we check if limit as x approaches 3 exists.

As x approaches 3 from below f(x) approaches 14 and at x = 3 = 14.

As x approaches 3 from above f(x) approaches 14 and at x = 3 = 14.

These 3 conditions  shows that f(x) is continuous at x = 3.

Answer Link

Otras preguntas

does a straw have one or two holes?
Allie is completing a long division problem that may or may not have a remainder. In each box, drag the appropriate digit to show the correct way to divide Answ
Who did the American people blame for the violence directed at the Bonus Army? A. Hayes B. Hoover C. Truman D. MacArthur
What is your final (x,y) ordered pair solution to the system of equations?
Selena currently participates in weight training three times a week but would like to increase her cardiorespiratory fitness level. Which FITT principle does sh
What is the value of Avogadro's constant?​
In Last Lecture, which person does Randy Pausch connect to the idea of always encouraging his students to strive for higher goals? his father his doctor Andy Va
What helps the chromosome coil up ? A. Volume B. Histones C. Polymerase D. Hydrogen ( please help its due right now ) ( ✌︎'ω')✌︎
Evaluate 64 = (15 – 7) x 2 - 9.
whats the answer for this (-4)+(-4)+(-4)